Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 25(4): e14323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38426612

RESUMEN

The Elekta Unity magnetic resonance (MR) linac is limited to longitudinal couch motion and a sagittal-only laser, which restricts the ability to perform patient-specific quality assurance (PSQA) intensity-modulated radiotherapy (IMRT) measurements for very lateral targets. This work introduces a simple method to perform PSQA using the Sun Nuclear ArcCheck-MR phantom at left and right lateral positions without additional equipment or in-house construction. The proposed setup places the center of the phantom 1.3 cm vertical and 12.9 cm lateral to isocenter in either the left or right direction. Computed tomography (CT) scans are used to simulate the setup and create a QA plan template in the Monaco treatment planning system (TPS). The workflow is demonstrated for four patients, with an average axial distance from the center of the bore to the planning target volume (PTV) of 12.4 cm. Gamma pass rates were above 94% for all plans using global 3%/2 mm gamma criterion with a 10% threshold. Setup uncertainties are slightly larger for the proposed lateral setup compared to the centered setup on the Elekta platform (∼1 mm compared to ∼0.5 mm), but acceptable pass rates are achievable without optimizing shifts in the gamma analysis software. In general, adding the left and right lateral positions increases the axial area in the bore encompassed by the cylindrical measurement array by 147%, substantially increasing the flexibility of measurements for offset targets. Based on this work, we propose using the lateral QA setup if the closest distance to the PTV edge from isocenter is larger than the array radius (10.5 cm) or the percent of the PTV encompassed by the diode array would be increased with the lateral setup compared to the centered setup.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Imagen por Resonancia Magnética , Aceleradores de Partículas , Radioterapia de Intensidad Modulada/métodos , Espectroscopía de Resonancia Magnética , Dosificación Radioterapéutica
2.
J Clin Med ; 11(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35329988

RESUMEN

MR-guided adaptive radiotherapy (MRgART) provides opportunities to benefit patients through enhanced use of advanced imaging during treatment for many patients with various cancer treatment sites. This novel technology presents many new challenges which vary based on anatomic treatment location, technique, and potential changes of both tumor and normal tissue during treatment. When introducing new treatment sites, considerations regarding appropriate patient selection, treatment planning, immobilization, and plan-adaption criteria must be thoroughly explored to ensure adequate treatments are performed. This paper presents an institution's experience in developing a MRgART program for a 1.5T MR-linac for the first 234 patients. The paper suggests practical treatment workflows and considerations for treating with MRgART at different anatomical sites, including imaging guidelines, patient immobilization, adaptive workflows, and utilization of bolus.

3.
Radiat Res ; 195(3): 230-234, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33347596

RESUMEN

MR-linac technology enhances the precision of therapeutic radiation by clarifying the tumor-normal tissue interface and provides the potential for adaptive treatment planning. Accurate delineation of tumors on diagnostic magnetic resonance imaging (MRI) frequently requires gadolinium-based contrast agents (GBCAs). Despite generally being considered safe, previous literature suggests that GBCAs are capable of contrast-induced acute kidney injury (AKI). It is unclear if the risk for AKI is enhanced when GBCAs are administered concurrently with ionizing radiotherapy. During irradiation, gadolinium may be liberated from its chelator which may induce AKI. The goal of this work was to determine if radiation combined with GBCAs increased the incidence of AKI. Using a preclinical MRI-guided irradiation system, where MRI acquisitions and radiation delivery are performed in rapid succession, tumor-bearing mice with normal kidney function were injected with GBCA and treated with 2, 8 or 18 Gy irradiation. Renal function was assessed on days three and seven postirradiation to assess for AKI. No clinically relevant changes in blood urea nitrogen and creatinine were observed in any combination of GBCA and radiation dose. From these data, we conclude that GBCA in combination with radiation does not increase the risk for AKI in mice. Additional investigation of multiple doses of GBCA administered concurrently with irradiation is warranted to evaluate the risk of chronic kidney injury.


Asunto(s)
Lesión Renal Aguda/diagnóstico por imagen , Medios de Contraste/farmacología , Compuestos Organometálicos/farmacología , Radiación Ionizante , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/fisiopatología , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/efectos de la radiación , Medios de Contraste/efectos adversos , Modelos Animales de Enfermedad , Gadolinio/efectos adversos , Gadolinio/farmacología , Humanos , Riñón/diagnóstico por imagen , Riñón/efectos de los fármacos , Riñón/patología , Riñón/efectos de la radiación , Imagen por Resonancia Magnética , Ratones , Compuestos Organometálicos/efectos adversos , Radioterapia Guiada por Imagen/efectos adversos , Radioterapia Guiada por Imagen/métodos
4.
J Appl Clin Med Phys ; 21(12): 246-252, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33207030

RESUMEN

PURPOSE: To determine if the gamma knife icon (GKI) can provide superior stereotactic radiotherapy (SRT) dose distributions for appropriately selected meningioma and post-resection brain tumor bed treatments to volumetric modulated arc therapy (VMAT). MATERIALS AND METHODS: Appropriately selected targets were not proximal to great vessels, did not have sensitive soft tissue including organs-at-risk (OARs) within the planning target volume (PTV), and did not have concave tumors containing excessive normal brain tissue. Four of fourteen candidate meningioma patients and six of six candidate patients with brain tumor cavities were considered for this treatment planning comparison study. PTVs were generated for GKI and VMAT by adding 1 mm and 3 mm margins, respectively, to the GTVs. Identical PTV V100% -values were obtained for the GKI and VMAT plans for each patient. Meningioma and tumor bed prescription doses were 52.7-54.0 in 1.7-1.8 Gy fractions and 25 Gy in 5 Gy fractions, respectively. GKI dose rate was 3.735 Gy/min for 16 mm collimators. RESULTS: PTV radical dose homogeneity index was 3.03 ± 0.35 for GKI and 1.27 ± 0.19 for VMAT. Normal brain D1% , D5% , and D10% were lower for GKI than VMAT by 45.8 ± 10.9%, 38.9 ± 11.5%, and 35.4 ± 16.5% respectively. All OARs considered received lower maximum doses for GKI than VMAT. GKI and VMAT treatment times for meningioma plans were 12.1 ± 4.13 min and 6.2 ± 0.32 min, respectively, and, for tumor cavities, were 18.1 ± 5.1 min and 11.0 ± 0.56 min, respectively. CONCLUSIONS: Appropriately selected meningioma and brain tumor bed patients may benefit from GKI-based SRT due to the decreased normal brain and OAR doses relative to VMAT enabled by smaller margins. Care must be taken in meningioma patient selection for SRT with the GKI, even if they are clinically appropriate for VMAT.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Meníngeas , Meningioma , Radioterapia de Intensidad Modulada , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Humanos , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/cirugía , Meningioma/radioterapia , Meningioma/cirugía , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
5.
Radiother Oncol ; 139: 23-27, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31010709

RESUMEN

For decades the field of radiation oncology has sought to improve the therapeutic ratio through innovations in physics, chemistry, and biology. To date, technological advancements in image guided beam delivery techniques have provided clinicians with their best options for improving this critical tool in cancer care. Medical physics has focused on the preferential targeting of tumors while minimizing the collateral dose to the surrounding normal tissues, yielding only incremental progress. However, recent developments involving ultra-high dose rate irradiation termed FLASH radiotherapy (FLASH-RT), that were initiated nearly 50 years ago, have stimulated a renaissance in the field of radiotherapy, long awaiting a breakthrough modality able to enhance therapeutic responses and limit normal tissue injury. Compared to conventional dose rates used clinically (0.1-0.2 Gy/s), FLASH can implement dose rates of electrons or X-rays in excess of 100 Gy/s. The implications of this ultra-fast delivery of dose are significant and need to be re-evaluated to appreciate the fundamental aspects underlying this seemingly unique radiobiology. The capability of FLASH to significantly spare normal tissue complications in multiple animal models, when compared to conventional rates of dose-delivery, while maintaining persistent growth inhibition of select tumor models has generated considerable excitement, as well as skepticism. Based on fundamental principles of radiation physics, radio-chemistry, and tumor vs. normal cell redox metabolism, this article presents a series of testable, biologically relevant hypotheses, which may help rationalize the differential effects of FLASH irradiation observed between normal tissue and tumors.


Asunto(s)
Neoplasias Hepáticas/radioterapia , Protocolos Clínicos , Tomografía Computarizada de Haz Cónico/métodos , Electrones/uso terapéutico , Marcadores Fiduciales , Humanos , Movimiento , Radiobiología/métodos , Dosificación Radioterapéutica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...